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A Smart Market for Resource Reservation
in a Multiple Quality of Service Information Network

Jeffrey K. MacKie-Mason

1. Allocating Scarce Resources in a Multiple Quality of Service Network

The technology is nearly available to offer remarkably powerful new communications services:
multiple streams, from multiple users, composed of different applications that require different
qualities of service (QoS), all travelling over a single interconnected physical infrastructure. Soci-
ety will benefit from integrated applications (video conferencing with interactive demos and shared
whiteboards; computer-integrated telephony, &c.), and from increased access to information re-
sources: access by more people, more of the time, from more places. However, as long as the laws
of thermodynamics hold, the resources on which these systems are built will not be free. Efficient
use of advanced networks requires a rational mechanism for allocating the scarce resources to the
rapidly growing number of users and service types. Allocation in a multiple quality of service
network may be the single greatest barrier to communications “anytime, anywhere”. In this paper I
present a fairly general model of the problem, and, after showing that a decentralized open market
will fail, I propose a mechanism for solving the problem.

Historical information networks have been based on separate physical networks for each major
class of service. Different wires or segments of the spectrum were used for telephony, cable and
broadcast TV, telegraph, paging, data. We now appear to be in an era of dramatic change in the
information transport model, viz., convergence. For example, one of the less well-known marvels
of the Internet is its new engineering model: multiple heterogeneous applications are supported
simultaneously on a single shared physical network. "Telephony" circuits also support fax and
Internet sessions, and are being tested for video programming. Cable networks are adding Internet
transport to their video programming service, and are testing telephony.

Heterogeneous, shared networks offer a cost-saving opportunity. Mixing more, and more di-
verse, service flows on a single network improves the opportunity for statistical multiplexing, which
then improves capacity utilization. Further, fewer physical, redundant physical infrastructures need
to be built. Perhaps most important is that shared transport networks open possibilities for interac-
tion and sharing between different communications applications. For example, on a network that
provided video conferencing, and shared applications software, remote colleagues could work in
real time using multiple tools: voice, facial and hand expressions, a shared whiteboard, software
demos, and so forth.

Internet bandwidth sharing is supported by two features: packet switching and layering.
MacKie-Mason and Varian (1994). By breaking flows into discrete, small packets it is possi-
ble to more efficiently share limited bandwidth: since each packet contains its own identification
information, channels can be shared by the packets from multiple flows or sessions. Layering sup-
ports sharing by multiple different applications. The transport and application layers are separate,
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and any application can use transport as long as it follows the rules for wrapping packet envelopes
around the data to be transported.

As remarkable as the Internet is, it lacks a third crucial feature for simultaneously supporting
multiple, heterogeneous applications: multiple qualities of service. Certain services — especially
those that are inelastic (Braden, Clark, and Shenker (1994)) — require some service guarantees. For
example, real-time, synchronous conversation is very intolerant of delay. Inelastic applications are
poorly suited for a packet-switched network using best efforts service. Other applications or users
differently value packet loss, maximal packet delay, average delay, delay variance (jitter), and other
quality factors. However, at least two recent protocol developments offer the possibility that shared
multi-application networks may start to see multiple qualities of service: ATM (asynchronous
transfer mode) and RSVP. ATM creates a virtual circuit for each flow, and assignment of circuits
can be restricted (admission control) in order to guarantee certain qualities of service. RSVP is a
new protocol being implemented on top of the Internet’s TCP/IP service that permits end-to-end
reservation of bandwidth, based on which some service guarantees can be offered.

Thus, we are moving toward more flexible network services, with increasing convergence:
capacity shared across multiple sessions, from multiple users, with multiple guaranteed qualities
of service. A critical need, however, is to design efficient and feasible mechanisms for allocating
the various resources in an integrated services network (Shenker (1993), MacKie-Mason and
Varian (1995)). The mere fact that it is technically possible to share a network across many
uses with different service requirements does not mean that the network will be provide valuable
service. Already on the Internet with only a single quality of service (best efforts) the problem
of congestion is well known. When resources are limited — when not everyone on the planet
cannot simultaneously watch live video transmissions from Mars — how should they be allocated
to maximize the value of the network to its user community overall? For this paper I pursue
the objective of efficiency: ensuring that fixed resources (bandwidth, delay bounds, packet loss
guarnatees, etc.) are allocated to the highest value uses.1

A good allocation mechanism is absolutely essential in a multiple quality of service network:
with so many diverse competing demands for network resources, network performance could
be quite poor if resources are not directed to their best uses. Suppose, for example, that users
could obtain guaranteed low-delay service on a first-come, first-served basis (the current Internet
allocation mechanism): nothing would stop all of the email users from requesting guaranteed
service (even though email easily tolerates moderate delays), leaving none for users who need, and
highly value guaranteed low-delay service for video conferencing. (Imagine such an allocation
mechanism for first-class seats on airlines!) The social value realized from modern integrated
services communications networks will be greatly constrained until efficient, feasible allocation
mechanisms are developed.

In this paper, I characterize a rather general solution to the problem of efficient resource
allocation in a multiple QoS network. Unfortunately, as I show, standard distributed or market
mechanisms are unlikely to do a very good job of approximating the efficient allocation. I then
describe a relevation mechanism that does obtain efficient allocation.

The generality of the model follows from envision a network that can guarantee multiple QoS
as doing so by scheduling resources in advance, after users request reservations for the resources.

1 The mechanism proposed at the end of this paper could be applied using any well-de�ned social
objective function, including one that values some measure of fairness rather than just e�ciency.
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This architecture allows us to design an allocation mechanism that is responsive to the state of
demand. State-responsive allocation allows the “rationing rule” during congested periods to assign
the available resources to the highest value users. I am silent on how long in advance one must
reserve resources, and on how long the reservation interval lasts. By suitably shrinking both the
advance notice period and the length of the reservation interval, it is possible to approach arbitrarily
close to continuous real-time pricing. How close an actual system can approach to real-time
depends on the costs of implementing the mechanism, and the necessary propagation lags required
to communicate information between the users and the network pricing system.

I draw on results from several literatures in order to develop a reasonable and general multiple
QoS network model, and for it an efficient allocation mechanism. In particular, the solution
of the network allocation problem leans on multicommodity flow results from the transportation
engineering literature. Congestion pricing has been studied in the network economics literature; see,
e.g., MacKie-Mason and Varian (1995) for a recent treatment relevant for information networks.
The smart market proposed emerged from the mechanism design literature. I also borrow the
theory of effective bandwidth from computer science. The effective bandwidth results are not
necessary for the general results, but they greatly aid the exposition, and may be essential for
feasible implementation of a smart market with reasonably frequent reservation intervals.

2. The Basic Problem

I consider a network with multiple nodes and links. Each link has a fixed capacity measured in
bits per second. The network transport technology permits some form of directed path bandwidth
reservation in advance, sufficient to guarantee various qualities of service (e.g., ATM, or RSVP
over TCP/IP).

Users located at each node wish to send data to other nodes. For expository ease I aggregate all
users at a particular node into a single, representative user. The user at node i would like to send
traffic to each of the other nodes, j. There are different types of data traffic, which require different
network service characteristics. For simplicity, I limit the model to two traffic characteristics:
mean delay and minimum bandwidth. For example, users may value a video broadcast only if they
can be guaranteed a bandwidth of 1.5 Mbps and a maximum delay of 100 ms. However, all of
the results generalize straightforwardly to a finite-dimensional vector of service quality attributes.
The number of dimensions that can be managed will largely depend on computational and other
transactions costs.

An individual’s utility from using the network depends on the amount of traffic admitted from
the user, of each service type, for each of the possible destinations. I simplify by assuming that the
user’s benefit received from traffic between nodes i and j is independent of traffic between i and
any other node h not equal to j. (That is, the value of my email to mom doesn’t depend on whether
my email to dad got through — not a perfect assumption.) I make the usual assumption that the
marginal utility of traffic between any two nodes is decreasing. There is “free disposal” of traffic
received at a node j, so that absent rationing or usage fees each user would send an infinite amount
of traffic (or at least far more than the available capacity could manage).

The network planner’s objective is to maximize the sum of user utilities by specifying an
admission rule and specifying a network routing plan. By the assumption of free disposal there is
an excess demand for capacity, thus the need for an admission rule that specifies how much traffic
each user may deliver to each destination. The network has a mesh topology and uses a protocol
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that makes it possible to share the links among traffic from various users, of various QoS, going
to various destinations, and to route traffic along multiple paths. Therefore, since the values that
users place on their traffic differ by destination and quantity delivered, the network manager needs
to solve a routing problem in order to deliver the combination of traffic that maximizes total user
benefits.

The network planning problem is complicated due to the quality of service requirements
imposed by users. If all traffic had the same delay requirements and differed only in the bandwidth
required, then a routing plan would be constrained by the requirement that

P
h bhl < Bl, where bhl

is the bandwidth required by source h on link l, and Bl is the capacity on link l. However, when
sources differ in their service requirements, the aggregation of traffic is typically not linear across
the different types of flows. For example, a link that can accomodate four 5 Mbps flows with mean
delay requirement �1 may not be able to accomdate two 5 Mbps flows of type �1 and one 10Mbps
flow of type �2. Therefore, in general the network planner needs to optimize the admission and
routing of flows across a mesh network with complex nonlinear interactions among the different
types of flows that share links.

Recently remarkably powerful results on “effective bandwidth” have emerged that may greatly
simplify the network allocation problem. These results indicate that for a broad range of source
types an aggregation may be performed that permits a multiple-dimension service quality guarantee
to be made based solely on a one-dimensional bandwidth reservation without efficiency loss.2 If an
effective bandwidth formulation is possible for a given traffic source and network technology, the
constraint on link utilization can again be expressed as linear and one-dimensional:

P
hk b

k
hl(�) �

Bl, where bkhl is the effective bandwidth required by user h for traffic of type k, which is a function
of the quality of service parameters for traffic type k, denoted by �.

As an example, consider the result from Kelly (1991) (see also de Veciana and Walrand (1993).
He models a system with nj independent sources of type j. The distribution of bursts from each
source is Poisson with mean arrival time �j; the length of each burst has mean �j and variance �2j .
The network offers first-come, first-served delivery. Then the mean delay is given by

ED =

P
j nj�j(�

2
j + �

2
j )

2(1�
P

j nj�j�j)
:

If the service constraint is that ED < d, thenX
j

njbj(d) � 1

where bj(d) = �j [�j +
1
2d
(�2j + �

2
j )]:

For expository I shall assume that the traffic sources in the network are susceptible to an effective
bandwidth characterization. This allows us to aggregate the traffic of each type on a given link into
the effective bandwidth required for that traffic, and then sum across traffic types to find the total

2 For the original work, see, e.g., de Veciana, Olivier, and Walrand (1993), de Veciana and Walrand
(1993), Kelly (1991), Elwalid and Mitra (1992), Chang (1992), Gibbens and Hunt (1991), (Kesidis92). Of
course, subject to absolute network performance constraints, it is always possible to guarantee a service
quality by assigning enough bandwidth. The e�ective bandwidth results show how the e�cient lower
bound on necessary bandwidth can be found in some cases.
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required bandwidth and constrain this requirement to be no more than the bandwidth available.
This reduces the complexity of an already messy problem. This convenience may extend beyond
exposition: feasible implementations of a smart market may also rely on dimension-reduction to
limit the complexity of the bidding space and the magnitude of required computation for each
allocation. In that case, effective bandwidth theory is an efficient, theoretically correct approach
to such simplification, in contrast to arbitrary elimination of dimensions (e.g., bidding only on raw
bandwidth and ignoring user preferences over mean delay).

3. The Model

I now specify the planning problem. The network is given by a capacitated graph, G(N;L;B),
specifying a set of nodes, i 2 N , connected by links, (i; j) 2 L, with each link (i; j) constrained
to offer a maximum bandwidth of Bl. P is the set of all origin–destination pairs, with element
p = (i; j) 2 P . In general, not all O/D pairs p will have a direct link; that is, there exist pairs
(i; j) 2 P such that (i; j) =2 L. K is the set of different traffic types (characterized by different
service requirements), with element k. The unit cost of sending a flow along link (i; j) is given by
cij;pk.

There is a single representative user located at each node i. Thus every unique origin/destination
pair has a single source of traffic of each type k; the traffic actually delivered is denoted dpk. Let
Pi denote the set of origin/destination pairs that originate at node i. A user located at node i

derives utility from her traffic dpk, p 2 Pi equal to upk(dpk); utility from traffic of different
types and to different destinations is additively separable, so the user’s total utility is given byP

p2Pi;k2K
upk(dpk). I assume that the upk(�) are concave.

The network described has multiple commodities, indexed in two dimensions: p and k. A flow
of type k is different from a flow of type k0: users value them differently and they may impose
different costs on the network. Likewise, a flow between O/D pair p is different from a flow between
pair p0. Thus, a unique commodity is dpk, and I will sometimes refer to a flow of type (p; k).3

Suppose (part of) the flow of type k between node pair p transits a link from node i to j. I
denote this flow on line (i; j) by fij;kp. Assume that there is an effective bandwidth function that
aggregates all traffic of type k along link (i; j) into a required bandwidth to support that traffic and
its service requirements,

bijk = g

 X
p

fij;kp

!
:

With a full-duplex network, there is independent and equal capacity in both directions, so effective
bandwidth calculations will be required for each link in each direction, that is for all links (i,j),
i 6= j.

3
This type of multicommodity network di�ers from, say, an electricity transmission network. In

an electric grid, there is only one commodity type. Electrons are electrons, so the set K has only one
element. Likewise, electric grid O/D pairs are generally irrelevant: buyers and sellers want to deliver or
receive electrons at a given node, but don't care where those particular electrons came from, or where
they are going. Indeed, due to Kircho�'s physical laws it is generally impossible to know or guarantee the
speci�c path followed, or the destination reached by any given electrons placed on the grid at a particular
node. See MacKie-Mason (1994) for application of a smart market mechanism to an electric transmission
network problem.
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Suppose the network planner can directly observe the users’ utility functions. Then the planning
objective is

max
dpk;fij;kp

X
pk

upk(dpk)� cij;pkfij;pk: (1)

The admitted flows must be routed through the network. Routing requires that each flow start at its
origin, end at its destination, and that it leave every intermediate node that it enters. Therefore, the
assignment of flows to links must satisfy the multi-commodity flow constraints (Ahuja, Magnanti,
and Orlin (1993)),

X
j 6=i

fij;kp �
X
j 6=i

fji;kp = D(dpk; i) =

(
dpk if i is the origin for p
�dpk if i is the destination for p
0 otherwise

8i 2 N: (2)

This set of constraints can be compactly represented in matrix notation as N fpk = D(dpk; i),
where N is the “node-link incidence matrix.” Each column ij corresponds to the variable dp, with
a +1 in the ith row and a �1 in the jth row; the rest of the entries are zero.

Feasible routing is constrained by the capacity of each link. To enforce this constraint, flows
of a given type on a given link are aggregated, and the resulting effective bandwidth is determined:

bijk = g

 X
p

fij;kp

!
8i 6= j: (3)

Then the sum of the effective bandwidths on a link is constrained to be less than the available
capacity: X

k

bijk � Bij : (4)

Finally, all of the flows must be nonnegative, so

fij;kp � 0: (5)

4. Solving the Network Planning Problem

The problem in (1), subject to the constraints in (2), (4), and (5), has a special structure that makes
it easier to interpret the optimality conditions. To see this, consider a simple decomposition of the
problem: for any vector of usages, find the minimal cost of routing; then choose the usages the
maximize total benefits net of costs. I can use this decomposition into a pair of problems — routing
and usage — because the choice vectors in the two problems are independent in the objective
function. That is, the only link between usages and link flows (dpk and fij;pk) occurs through the
technological routing constraints, (2).

Formally, an optimal solution of (1) and its constraints must satisfy the subproblem

C(d̂pk) = min
fij;kp

X
p2P;k2K;(i;j)2L

cij;pkfij;pk (6)
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subject to

N fpk = D(d̂pk; i)X
k

g

 X
p

fij;pk

!
� Bij

fij;pk � 0

dpk = d̂pk for all p 2 P; k 2 K:

That is, the cost should be minimized whatever the vector of usages d̂pk. Then the optimal
usages are chosen to

max
dpk

X
p2P;k2K

upk(dpk)� C(dpk):

The problem in (6) is a slight generalization of the standard multicommodity flow (MCF)
problem.4 Although I could write down the Kuhn-Tucker sufficient conditions for an optimum
directly, it turns out to be easier to interpret the result if I use the sufficient complementary slackeness
conditions from the programming dual to the MCF problem. These are:

wij

 X
k

g

 X
p

f
�

ij;pk

!
� cij

!
= 0 8(i; j) 2 L (7)a

c
�
ij;pk � cij;pk + wij � �i;pk + �j;pk � 0 8(i; j) 2 L; p 2 P; k 2 K (7b)

c
�
ij;pkf

�

ij;pk = 0 8(i; j) 2 L; k 2 K; p 2 P (7c)

where the wij are the Lagrangian multipliers (shadow values or dual variables) on the capacity
constraints, and the �i;pk are the multipliers on the routing constraints.

I shall call c�ij;pk the excess cost associated with traffic of type (p; k) travelling over link (i; j).5

The excess cost is central to the economic interpretation of the network planning problem; I discuss
it in detail below.

To solve the full problem, (1), I also need the complementary slackness conditions correspond-
ing to the optimal usages, d�pk, which are easily obtained from the Kuhn-Tucker conditions:

 
u
0

pk(dpk) +
X
i2N

�i;pk
@D(dpk; i)

@dpk

!
dpk = 08p 2 P; k 2 K: (8)

4 The di�erence is that one of the constraints, (4), involves a nonlinear function of the control
variables.

5 The network programming literature usually refers to this variable as the \reduced cost", but for
\excess cost" is more natural for the economic interpretation I give it.

7



5. Characterizing the Solution

The optimal solution (d�pk; f
�

ij;pk) has a rather useful interpretation. I shall first provide the
interpretation, then return to show how it is supported by the optimality conditions. Neglect for a
moment that flows are defined by a specific origin/destination pair, and think of them instead as a
variety of abstract commodities indexed by type (p; k). Suppose that a network user could place a
flow of type (p; k) on the network at node i, or could extract a flow at node j. We can interpret the
�ipk as the spot prices or marginal system costs for inserting traffic of type (p; k) at node i. Then
the marginal system cost of getting traffic from node i to node j is the cost of inserting the flow at
i less the cost of inserting it at j (i.e., plus the value of extracting it at j). For any two nodes that
actually lie on an optimal route from origin to destination the net cost between nodes i and j is
�ipk � �jpk , where this relationship holds when i and j are themselves the origin and destination
nodes.

How does this interpretation of the dual variables �ipk help us? Only links, not nodes, have
physical costs and constraints in this network model. Therefore, I could find the marginal system
cost for a flow of type (p; k) by summing the marginal link costs (including both transport costs and
the shadow or opportunity costs due to the capacity constraints) along all of the links that constitute
an optimal route for p. However, that requires knowing the list of links in an optimal route, and the
transport and capacity costs for each of those links. This information is available to the network
planner, of course, but communicating the information to users would be a heavy burden (suppose
a typical route involved 15 links?).

Instead, the system cost information can be abstracted to only two numbers for each flow: the
nodal prices �ipk and �jpk for O/D pair (i; j). All of the transport and capacity costs for the links
along an optimal route are embedded in the nodal prices, and need not be reported. Users could be
informed of system costs without knowing the route their traffic follows.

I shall now show how the nodal spot price interpretation of the �ipk emerges from the optimality
conditions. To begin, consider a simplified mesh network in which there is only one type of traffic,
no capacity constraints, and only one origin-destination pair (but possibly multiple feasible routes).
Imagine a physical model of this network in which the links are lengths of string, with the length
of each link equal to the cost of traversal, cij .

Optimality requires that for any usage load, d, the routing cost must be minimized. To find the
minimum cost path I can use the string model to solve a minimum distance problem (since distance
equals cost): I do that by holding the mesh at the origin and destination node and pulling tight.
The links that are taut form the minimum cost path. Along this path, designate the minimum cost
of reaching an intermediate node, j, by �j . Optimality requires

�j � �i + cij

for all (i; j) 2 L since if this were false, one could get to j more cheaply than �j by going first
to i at cost �i and then going from i to j at cost cij. Further, for any link (i; j) that is part of the
optimal path, �j � �i + cij = 0. If I recognize that the shadow values are zero, wij = 0 when
there are no capacity constraints, I have obtained the excess cost condition in (7b):

c
�
ijf

�

ij = (cij � �i + �j)f
�

ij = 0 8(i; j) 2 L

That is, if there is a flow on link (i; j), the excess cost on that link must be zero. If the excess cost
is positive, the flow must be zero. In the string model, a link with a positive excess cost will be
slack (it has excess “length”).
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Now I can explain the interpretation of the �i as spot prices for inserting traffic at node i. On a
link that is in use, ��i + cij = ��j . To “purchase” or obtain a packet at j, one can pay the spot
price at j, (��j), or pay the spot price at node i and pay the transport costs from i to j, for a total
of ��i + cij = ��j.

In fact, users don’t have a demand for packets at node j, but for inserting packets at an origin
node, O, and receiving them at a destination node, D. However, getting a packet from O to D can
be thought of as a sequence of transactions along the minimum cost path. Indeed, it is helpful to
imagine a set of artificial brokers or arbitrage agents stationed at each node who transact in packet
insertions and extractions. The user pays a broker �O to take a packet at the originating node, O.
The broker hires transport to carry the packet to intermediate node i1 at a cost cOi1 . The broker
then extracts the packet from the network, and pays the user �i1 to take it off his hands at i1. This
sequence is repeated for each hop along the optimal route. Clearly, the total cost for this route isP

(i;j)2L� cij , where L� is the set of links in the optimal path. To interpret this in terms of nodal
spot prices, consider the sum of the excess costs along the optimal path:

X
(i;j)2L�

c
�
ij =

X
(i;j)2L�

cij � �O + �D = 0

where the sum is zero because the excess cost of each link is zero on the optimal path, and all of
the nodal prices for intermediate nodes drop out because a packet both enters and departs each of
those nodes. Thus,

�OD � �O � �D =
X

(i;j)2L�

cij;

and I can see that paying the cost of the optimal path is equal to paying the net nodal spot price
�OD which is found by paying �O to insert traffic at the origin, and receiving �D for extracting the
traffic at the destination.

Suppose the network manager were going to charge each user for the marginal cost that user
placed on the network. The manager could post at node i a list of �p � �ip � �jp for all j 6= i.
Then users at i could consult the list to find the cost of their traffic to each destination, without
needing any knowledge about the routing of their traffic through the network or the costs of each
network link.

Let us now return to the complete problem, in which traffic can originate at any node, and there
may be more than one type of flow (each with different effective bandwidth requirements). In this
general network problem, a flow of type (p; k) may compete with the single flow in our simple
network for the use of some links. I can visualize again what happens with our string model.
Suppose I have stretched the mesh taught to find the minimum cost route for the first traffic flow of
type k serving pair p. Now add a second flow that serves a different origin and different destination,
p
0. Using a second pair of hands, grasp the new O/D pair and attempt to pull taut. If the minimum

cost path for the new flow runs along an entirely disjoint set of links from the original flow, I will
succeed in finding an optimal taut path without having any effect on the optimal route for the first
flow.6

6
For a simple example, think of an X-shaped network with four outer nodes and one central node,

and links from each outer node to the central node. I can pull taught between nodes 1 and 2, and between
nodes 3 and 4, without either pair having an e�ect on the other.
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There is a second possibility: the minimum cost path for the second flow will want to share
some links with the first flow. This is possible in our simple string model: the two taut paths will
have some overlapping links. However, the string model does not have any capacity constraints.
Suppose that the combined flows are greater than the capacity along some of the shared links. I can
represent the demand for bandwidth by the force with which I pull between the O/D pairs. If I now
allow the strings to have some elasticity, then I can say that if a taut path is found without stretching
any links I have not exceeded the capacity, but if the combined flows exceed capacity along some
links, those links will be stretched by the excess pull (demand for capacity). The result is that those
links will become longer: since length measures link cost in this model, I have effectively found
that the cost of sending flows along the congested links has increased.

At this point I may be stretching the string metaphor too far. What in fact happens when link
capacity is binding is that some of the traffic either must not be delivered, or it must be routed along
a more costly route. But the idea that I have increased the cost (stretched the length) along the
congested link is quite correct. When all of the traffic cannot flow along a least cost link, the cost of
using that link for a flow becomes the sum of the physical transport cost, plus the opportunity cost
(congestion cost) incurred by having to either reduce some traffic or displace it to a more costly
link. Indeed, if the excess traffic can be rerouted, the additional cost is precisely the difference in
transport cost between the preferred path and the best available alternative. More generally, the
opportunity cost for a given link will be either the incremental cost incurred by rerouting, or the
marginal user benefit foregone by reducing delivered traffic. That is, it is the marginal increase
in net system benefits (expression (1)) that would be obtained if capacity along the link were
increased.

Once all of the demanded flows are optimally routed, each link has an associated congestion
cost, wij � 0, which represents the next best use of that link. Therefore, when I calculate the
excess cost of a link, optimality requires that the cost of getting traffic to node j must be less than
or equal to the nodal cost at i plus both the transport and congestion costs from i to j:

c
�
ij;pk = cij;pk + wij � �ipk + �jpk:

The congestion cost on link (i; j) is independent of the type of traffic (p; k) because it represents
the next best use of the link, regardless of the type of traffic that is currently on the link.

In the full network, the marginal system cost for traffic of type (p; k) is

�pk � �ipk � �jpk =
X

(i;j)2L�

(cij;pk + wij) :

The nodal prices �ipk are different for each type of traffic k because each traffic type puts a different
load on scarce capacity, as shown by the g(�) functions in (4). Nodal prices differ for each O/D
pair p because flows between different pairs follow different routes, and the nodal prices embody
the cost of the links that are followed to get to that node.
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6. Decentralizing the optimal reservation of network resources

In the previous section I provide the necessary and sufficient conditions for a solution, and an
interpretation of the result for a network resource reservation problem. I described the values of
the the dual variables as spot prices, and remarked that users could be assessed the cost of their
incremental contribution to system cost by charging �pk for traffic of type (p; k). I intended this
description to suggest there might be a pricing scheme lurking that could obtain efficient network
usage through decentralized decisionmaking, rather than through a centralized solution to the
problem (1).

In fact, only an imperfect decentralized solution is possible. Suppose that user i maximizes a
quasi-linear utility function

max
fyi;dpkg

X
p2Pi;k2K

upk(dpk) + yi

where yi is income spent on other goods, subject to a budget constraintX
p2Pi;k2K

�pkdpk + yi =Mi 8i 2 N

where �pk is the unit price charged for flows of type k between O/D pair p, and M is the user’s
total income. The necessary and sufficient (assuming upk(�) are concave) conditions for the user’s
optimal purchases are�

u
0

pk(dpk)� �(�îpk � �ĵpk)
�
dpk = 0 8p 2 P; k 2 K (9)

and
� = 1

where (̂i; ĵ) are the origin and destination nodes in pair p. It is immediately obvious that after
substituting for �, the conditions in (9) are identical in form to the necessary conditions (8) in the
network planner’s problem. Thus, if the prices in the decentralized problem (�ipk) are chosen to
be the same as the nodal prices that result from the planner’s problem, the user’s demands in the
decentralized network will be identical to their usage vectors in the centrally planned network, and
the same optimal usage and routing solution will obtain.

There is a serious problem with this decentralization result, however. I have shown that if the
optimal prices �pk are announced, users will choose to demand the efficient traffic levels. However,
finding the optimal �pk required solving the full central planning problem for the network Once
the central planning problem is already solved (which, recall, requires that the network manager
know the users’ true benefit functions, upk(�)), there is nothing gained by announcing prices and
soliciting traffic, since the efficient traffic flows have already been found.

If user demands are reasonably predictable (perhaps by day and time of day), the decentralized
solution might provide a reasonably efficient method to approximate the optimum. The network
manager could solve the planning problem for the expected “normal” traffic demand, announce
the resulting nodal prices, and let users choose their actual traffic demands in light of the posted
(time-of-day) prices. The outcome would be approximately efficient. One problem is that the
network manager would have to also announce a rationing scheme that would deny resources
to some users when the decentralized set of demands for the network occasionally exceeded the
available capacity.
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7. An efficient, decentralized auction mechanism

Posting prices in advance and allowing users to choose their desired level of network usage at those
prices can at best yield an approximately efficient allocation. Unfortunately, even that approximate
solution has a serious drawback: for the central planner to calculate the efficient prices for “normal”
demand requires that the planner know the users’ benefit functions, upk(�).

In many industries, firms seem to do reasonably well at estimating the shape of customers’
preferences for their products, and setting prices accordingly. It may be unrealistic to think that
similar success will be possible for services in a multiple QoS network, at least for the next many
years. The services are new and constantly changing. Users have so far had little or no experience
in specifying their demands in a multiple QoS environment, so survey data are unlikely to be much
help. And dynamic congestion pricing is rare, so there are almost no useful data on how consumers
shift their usage over time to respond to it.

I propose a method for inducing users to truthfully reveal their preferences (as best they know
them) so that an efficient allocation can be calculated. This mechanism is known as a “smart
market.” A smart market combines modern computing power with the theory of a revelation
game to elicit truthfully reported utility functions and then solve for the optimal allocation. The
allocation is implemented by charging the nodal spot prices derived above. Thus, the smart market
has the same desirable efficiency properties as the solution to the omniscient network planner’s
problem. In particular, the congestion cost component of prices correctly signals where and how
much additional capacity should be added.

The smart market is a “generalized Vickrey auction” (GVA) (Varian and MacKie-Mason
(1994)). The Vickrey auction is a well-known scheme for assigning a good to the agent who
places the highest value on it, when individual valuations are private information. The idea is to
solicit bids and award the good to the highest bidder, but charge the second highest bid as the price.
Bidding one’s true valuation is a dominant strategy for each agent. The generalized Vickrey auction
extends the idea to allocate multiple units of a good, multiple goods, and goods with externalities
(so that agents care about how much others are consuming).

To understand the intuition for a generalized Vickrey auction, consider first the standard Vickrey
auction. Suppose there is one unit of one good, and two agents. Efficiency requires that the agent
with the higher valuation, vi receive the good. If agents announce a bid bi, then agent 1’s expected
payoff is

Pr[b1 > b2][v1 � b2]:

Suppose that agent 1 announces the truth, b1 = v1. Then agent 1 always gets the good when
the payoff is positive (v1 � b2 > 0), and never when it is negative. Clearly this is a dominant
strategy. Since both agents will tell the truth, the good always goes to the agent with the higher
true valuation.

The intuition is straightforward. First, the probability that an agent wins the auction depends
on her bid, but the payoff she receives does not. Second, since the agent’s bid cannot affect the
payoff, the payoff should be structured so that truthtelling always wins the auction when the payoff
is positive, and always loses when the payoff is negative. Truthtelling then dominates, and the
resulting allocation is Pareto efficient.

The payoff structure that induces truthtelling in the one good, one unit Vickrey auction is second-
pricing. More generally, the payoff structure that induces truthtelling is to give each participant
his or her utility plus all of the social surplus of the other agents measured using reported utility
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functions. If the agent reports truthfully, then the agent’s payoff is precisely equal to total social
welfare from the auction, which is the desired maximand. Since a truthtelling agent receives
precisely what the auction is maximizing, there can be no better strategy than truthtelling.

Of course, giving each agent all of the social surplus clearly is very costly! Therefore, the
auction design usually requires a payment by each agent. If that payment depends only on the
reports made by other agents it will not change truthtelling incentives. This is the role that the
“second-price” plays in the Vickrey auction: it takes away the value of the good to the highest
value user other than the agent in question. Thus in the two agent example, the winning agent gets
her surplus less the second agent’s surplus; the losing agent gets the winning agent’s surplus less
the winning agent’s surplus, or zero.

The generalized Vickrey auction (GVA) follows this intuition, but applies to problems in which
agents can have preferences over more than one good, more than one unit of the goods, and over
the quantities of the goods that are consumed by other agents (externalities). Assume that each
agent consumes a vector xa, and that the total matrix of consumptions by all agents is given by x.
Assume each agent has concave preferences over all consumptions, ua(x). Then the basic auction
is implemented as follows (Varian and MacKie-Mason (1994)):

1. Each agent reports a utility function ra(�).
2. The planner computes

x
� = argmax

X
a

ra(x)

subject to
F (x) = 0

and assigns action x�a to agent a = 1; : : : ; A. Then compute

W�a(x
�) =

X
b6=a

rb(x
�)

which is the total valuation of all agents other than a according to their reported utility
functions.

3. Agent a receives payoff

ua(x
�) + [W�a(x

�)�Ga(r�a)];

where Ga(r�a) is an arbitrary function of other agents’ reported utilities.

Truthtelling is the dominant strategy for this auction. The “second-price” analogue for a payment
Ga(�) by each agent is to charge each agent the total social surplus that would be possible if that
agent did not participate in the auction at all. The result, then, is that the net payoff received by
agent a is the net increment in total surplus that his participation creates. This payment would be

Ga(r�a) = max
x

X
b6=a

rb(0; x�a)

subject to
F (0; x�a) = 0:
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As a simple example, consider the original Vickrey problem: one unit of one good, winner-
takes-all; assume there are only two bidders, a and b. In that case, the person with the highest
reported utility gets ua + [0 � ub]. ub is the surplus that the second bidder would get if a did not
participate, because b would then get the good. This is the standard Vickrey rule: bidder a gets
the good, pays bidder b’s bid (which truthfully revealed b’s valuation), and keeps the net, ua � ub.
The loser, of course, gets 0 + [ua � ua] = 0.

If the only externalities are negative, not positive, then the auction raises non-negative revenue.
With negative externalities, Gi > W�i, for all agents i, because the other agents are better off with
a not participating.7 That means that each agent pays a non-negative amount for her allocation.
If there are costs of production, these can be simply recovered by adding them to Ga without
changing the problem, since the production costs do not depend on the bid values.

I now apply the GVA to the network pricing problem. Recall that the objective function is

max
dpk;fij;kp

X
pk

upk(dpk)� cij;pkfij;pk: (1)

The GVA for this problem is:

1. Each user p reports a utility function,
P

k rpk(dpk).
2. The network planner computes

fd�pk; f
�

ij;pkg = argmax
X
pk

rpk(dpk)� cij;pkfij;pk

for each p, subject to constraints (2), (4), and (5) given earlier. The planner then assigns the
vector d�p to each agent p 2 P , and computes

W�p(d
�) =

X
q 6=p;k2K

rqk(d
k
q )� cij;qkfij;qk:

3. User p receives a payoff

X
k

�
upk(d

�

pk)� cij;pkfij;pk

�
+ [W�p(d

�)�Gp(r�p)]: (10)

A convenient form for Gp(�) is

Gp(r�p) = max

X
q2P 6=p;k2K

rqk(d
k
q )� cij;qkfij;qk;

where the maximization is subject to the same routing, capacity and nonnegative constraints as
above, except that they are applied only to the users q 6= p.

7
Though not usually phrased this way, the second price in the traditional Vickrey auction is

actually the correct congestion price: when a gets the good, that causes congestion and crowds out b's
consumption. The social cost of that congestion is the utility foregone by b.
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With this definition of the payment Gp(�), user p’s payoff in (10) has two nice interpretations.
First, the expression in square brackets is the increase (decrease) in the welfare of all other users
that is created by user p’s participation. Thus, for participating in the network, p receives his own
direct utility (net of transport costs) plus the net increase in the social welfare of others that he
creates by his participation. If his traffic creates incremental congestion, and thus has a negative
effect on the value of the network to others, he pays precisely the incremental reduction in network
value to others that his congestion causes.

Alternatively, if I regroup the expression (10),

"X
k

�
upk(d

�

pk)� cij;pkfij;pk

�
+W�p(d

�)

#
�Gp(r�p)];

it becomes clear that p is receiving the net increment in total social surplus that his participation
creates. Since he gets all of the incremental surplus, he wants to truthfully reveal his preferences.
If his participation creates a negative congestion externality, then the net increment in total surplus
is less than his direct utility gain, and he pays a congestion tax.

The GVA for the network resource reservation problem has very nice properties. It elicits
truthful revelation of user valuations, and thus efficiently allocates the scarce bandwidth to the most
valued uses (subject to the constraints imposed by the flow routing problem). The solution of the
optimization in step (1) yields the nodal spot prices that can be used to communicate the cost of
different traffic types to users, and also to implement an approximate solution by applying the spot
prices from one auction to other, similar demand periods. The solution also yields the marginal
congestion costs for each link, wij , which send the correct signal to the network planner about
efficient capacity investments.

One problem with the GVA is that it requires a substantial amount of computation. If the
network planner simply knew the correct utility functions, as I assumed in section 6, the problem
would not be very computationally intense. If the utility functions upk were linear, then the problem
would be equivalent to a linear multicommodity flow problem, which has a special structure that
can be exploited in solution algorithms. Good MCF algorithms are two to five times as fast as
a general simplex linear programming code (Ahuja et al. (1993)). With nonlinear, but strictly
concave utility functions, the problem becomes somewhat more costly, but a solution is guaranteed
in finite time. The separability of the problem into an MCF conditional on a choice of optimal
demands that I exploited in the interpretation of the optimality conditions suggests that solution
would not be too costly.

However, when I turn to the GVA, with unknown user utility functions, a solution becomes
considerably more costly. The GVA mechanism itself requires only a single solution of the network
optimization, plus some ancillary linear computations. However, the GVA with a payment in the
suggested form of Gp(�) requires that the network problem be resolved once for every p (with a
minor reduction in dimensionality by the elimination of one user). Since some price Gp(�) would
certainly be necessary for any practical GVA, it appears that the computation may be on the order
of p network optimization problems. It is clear that the granularity of the allocation problem is a
crucial decision variable: the more disaggregated are users, the larger the computational burden
becomes in two dimensions: the solution time for the network optimization is likely to increase
polynomially in p, and the number of such optimizations increases linearlly in p. The computational
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cost will also affect the desirable interval over which resources can be reserved (e.g., blocks of an
hour, a minute, a second, etc.).
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